
LOCALLY-ADAPTIVE VIRTUAL ENVIRONMENTS IN PERSISTENT-STATE

MULTI-PLAYER GAMES

Marc Lanctot Clark Verbrugge
School of Computer Science

McGill University
Montréal, Canada, H3A 2A7

phone: 1-514-398-7071
fax: 1-514-398-3883

email: marc.lanctot@mail.mcgill.ca, clump@cs.mcgill.ca

KEYWORDS

Computer Games, Adaptation, Virtual Environment,
Cellular Automata, Fuzzy Logic, Weather Modeling,
Reputation System

ABSTRACT

We present a generic model for adaptation in large scale,
persistent state computer games that allows the vir-
tual world to change automatically, with reasonable ef-
ficiency. We demonstrate the utility of our technique
through two different forms of dynamic common game
content: 1) a basic weather cycle that adapts wind, rain
and water accumulation to variations and changes in a
large-scale terrain, and 2) a simple reputation system
that allows agents in the virtual world to respond ap-
propriately to a player’s actual behaviour in a game.

INTRODUCTION

A basic problem encountered by vendors of large scale,
persistent-state gaming environments is how to contin-
uously improve and change the virtual environment so
as to maintain player interest, and also reflect the activ-
ities of players in the virtual world. In a more generic
sense this falls under content creation [Mellon, 2003], al-
tering or adding new virtual content to the game. Man-
ual approaches are typically used due to the creative
requirements of general content creation and the com-
plexity of determining realistic adaptation results, but
impose extra game maintenance costs and administra-
tion requirements. Automatic approaches that sensibly
alter and tune the game world with minimal human in-
tervention are thus desirable.

We present a generic model for adaptation in computer
games that allows the virtual world to change automat-
ically, with reasonable efficiency. We demonstrate the
utility of our technique through two different forms of
dynamic common game content: 1) a basic weather cy-
cle that adapts wind, rain and water accumulation to
variations and changes in a large-scale terrain, and 2) a
simple reputation system that allows agents in the vir-

tual world to respond appropriately to a player’s actual
behaviour in a game.
Specific contributions of this work include:

• Design of a general adaptation framework suitable
for modeling flow-based properties in game simula-
tions. Our approach is based on cellular automata,
ensuring only local information is required at each
computation; this allows for reasonable scalability
in distributed environments.

• Design and experimental verification of systems for
two forms of popular, dynamic game content. We
describe a simple, aesthetic and logically consis-
tent adaptive weather model for game worlds, and
a game reputation system that can dynamically re-
spond to changing patterns of information dispersal
and player behaviour.

Related Work

Virtual environments are of course well studied,
and a variety of approaches already exist, though
most efficiency and representation improvements con-
centrate on network and communication optimiza-
tion [Macedonia et al., 1994] rather than adaptation
of the environment itself. Even environments
such as Bamboo that allow flexible modification
to the environment through hot-pluggable modules
[Watsen and Zyda, 1998] do not allow for incremental
adaptation of game content.
Adaptation is a traditional target of A.I. research.
Here a virtual environment is often separated into 2
major components: the static context, and the dy-
namic agents [Russell and Norvig, 2002]. In the con-
text of computer games, adaptation has been investi-
gated [Spronk et al., 2003], though like most other ap-
plications of A.I. [Carmel and Markovitch, 1998] it has
been primarily directed at adapting agents (NPCs, game
opponents) rather than the environment. Even non-
constant, fluctuating environments are usually viewed as
the process to react to, rather than the target of adapta-
tion [Haynes and Wainwright, 1995]. Our motivations

00 g10 g20

g01 g11

. . .
g

g02

g

ij

Figure 1: The virtual terrain.

more closely resemble building an artificial model as in
done in ALife [Steels, 1994]; we, however, focus on con-
structing an adaptive environment irrespective of adap-
tivity of the agents.

AN ABSTRACT MODEL FOR ADAPTATION

Our model is based on a finite 2-dimensional space, the
virtual terrain. We assume the space is partitioned into
a discrete mapping or grid. In the examples below we
use the familiar situation of a subset of <2 and a square
grid G, as illustrated in Figure 1. In general the tech-
niques we use apply equally well to any discrete metric
space [Burago et al., 2001].
One can imagine that the elements of the grid, or grid
sections have properties depending on the context of the
system in which the model is used. The adaptation pro-
cess aims to modify these properties based on the im-
pact of events that occur in the surrounding sections.
The procedure used is similar to the procedures asso-
ciated with cellular automata: iterative update rules
are applied based on properties of neighbouring cells
[Gardner, 1970].
A simple example of an application of local property
updates is blurring or spatial low-pass/box filtering in the
field of image processing [Baxes, 1994]. Each pixel px,y

in an image has a scalar intensity property, I(px,y), and
a neighbourhood of nearby pixels N(px,y). To create a
blurred image, a new intensity for each point is defined:

p′x,y =
I(px,y) +

∑

p∈N(px,y) I(p)

|N(px,y)|+ 1

and a simultaneous update rule is applied: ∀x, y : px,y ←
p′x,y. A good demonstration of the effects of this can be
found at [Fisher et al., 2003].

Vector Averaging and Angular Propagation

Grid properties in cellular automata are typically scalar
properties. SimCity, for example, is a classic game that
relies on cellular automata techniques [Stanford, 1996],
associating scalar quantities with grid cells. In SimC-
ity each grid cell may have quantities such as pollution
levels, crime rates, land value, and so on. There is,
however, no reason to restrict grid properties to scalar

Figure 2: Affect of an update on one grid section (assuming
γ = 1), showing a) before the change b) before the update
on the middle grid section c) after the change and update

values. We define a discrete vector field as VG : G→ <2,
so that for each grid section g ∈ G, there exists an as-
sociated vector, VG(g). The vector at cell (3, 2) will be
denoted ~g3,2. Note that a 2-dimensional vector can be
thought of as a magnitude and angle; when we are inter-
ested in just one component of the vector we can reduce
it to the scalar case; e.g., a simple angle value θ3,2.

Our technique is analogous to image blurring on vector
components. We initially ignore the vector’s magnitude
and assume it does not change. Each grid section’s vec-
tor is then modified to have a new angle computed as
a weighted average of its own state and neighbouring
angles. Suppose we have an average angle θg for a grid
section g and its neighbourhood. We define a shift from
~g′ for each neighbour g′ as the difference θg−θg′ . The to-
tal angular change is then some proportion of this shift,
for example δg = γ · shift from(~g′, ...). The update rule
then becomes: ∀g ∈ G : θg ← θg + δg, applied simulta-
neously over all grid sections.

To demonstrate this, consider a single grid section sur-
rounded by its 8-neighbourhood, all of its vectors point-
ing eastward (θ = 0) with arbitrary magnitude, as seen
in Figure 2. Now, if we shift each surrounding vector by
90◦, the average will shift by ∆θ = (8/9) ∗ 90◦, so the
update will shift the middle vector’s angle by δ = γ∆θ.
Since the middle vector has shifted, upon the next appli-
cation of the update (the next iteration) it will in turn
cause a difference in average of all points for which it is
a neighbour. This will cause those grid sections’ vectors
to update, and so on. As a result, a change in angle
propagates through the grid via its neighbouring cells,
but loses influence each iteration. By adjusting weights
such as γ local turbulence can be damped according to
the needs of the system being modeled.

Flow-based Fuzzy Property Update Rules

Non-constant scalar properties on grid sections are mod-
ified differently than the vector properties. The vectors
on each grid section describe a strength and direction
of flow. Here, the flow function is defined over a scalar
property and computes how much of the property is
transferred from a grid cell to the cells in its neighbour-
hood as a result of the vector property.

We use a fuzzy approach [McCuskey, 2000] to computing

flow for a more natural flow dispersal. Formally, the flow
function consists of n fuzzy components: z1, z2, · · · , zn.
Here, zj is an arbitrary fuzzy membership function
zx(~g) ∈ [0, 1] which represents the raw influence of that
component over a given property. The influences of the
components are then scaled so that they represent the
local influence in comparison to other influences:

fx(~gi,j , pi,j) =
zx(~gi,j , pi,j)

∑n
y=1 zy(~gi,j , pi,j)

To make this more clear, consider a scenario where the
components are associated with the four major car-
dinal directions: zN , zE , zS , zW . The amount trans-
fered in each direction is proportional to the corre-
sponding flow influence value fdir. At each iteration,
∆pW = kp ∗ fW (~gi,j , pi,j) ∗ pi,j is the amount of pi,j

that’s displaced westwards, where 0 < kp <= 1 is the
rate of transfer. The simultaneous update rules for this
component would then be: R1 : pi−1,j ← pi−1,j + ∆pW

and R2 : pi, ← pi,j−∆pW . Components for other direc-
tions are treated similarly. Note that it is also possible
to define hybrid components, formed by the conjunction
or disjunction of the fuzzy properties; e.g., zNW = zN

AND zW . Then the displacement of moisture would be
listed as a rule set in a fuzzy controller system as is done
in [McCuskey, 2000].
The actual behaviour of the flow depends on the mem-
bership functions used; if a system demands a smooth
flow, then naturally the membership functions should
reflect that. The role of the fuzzy membership func-
tions are to shape the flow. If, for instance we use a
“crisp” function, one with a sharply-defined peak such
as:

zN =

{

1 if π/2− ε <= θ <= π/2 + ε;
0 otherwise.

for small ε, then the westward flow will move somewhat
discretely. A smoother function like:

zN =
4

π

√

(
π

4
)2 − (x− π

2
)2

will lead to a smoother spreading. This will become
more clear in the example systems that follow.

EXAMPLE SYSTEMS

Here we describe two systems for adapting game content
based on our general model. These provide experimen-
tal evidence of the generality of our approach, and are
also novel forms of content generation in themselves.
Experimental results for these systems are described in
the following section.

An Adaptive Weather System

Weather simulation is typically considered a computa-
tionally intensive application, largely reserved for super-

50

9085

75

601020

40

30

Figure 3: Example gradient vector calculation. Grid cells
show local terrain altitudes.

computers. In the virtual worlds of computer games,
however, physical accuracy is less critical, and much
simpler approaches suffice to produce aesthetic, in-game
climate effects.
In its simplest form, a weather cycle displaces moisture:
water from lakes and seas is carried by wind to cooler
locations, where the reduced water capacity of cooler air
causes condensation; rain water eventually runs down-
hill to refill lakes and oceans [Enterprise, 2004]. There
are several factors that can affect this process, includ-
ing altitude and terrain structure, wind, temperature,
and so on. We have based our weather system upon the
following basic precepts:

1. Wind gathers moisture from bodies of water, and
loses water at higher altitudes (cooler tempera-
tures).

2. Water flows downstream.

3. Altitude affects wind patterns.

These basic rules will be transformed into update rules
following the model outlined in the previous section. We
must however first define another vector property used
to describe how water flows downstream.
The gradient vector on a grid section is a vector sum
composed of differences in scalar properties of surround-
ing cells. The magnitudes of the vectors are determined
by subtracting the terrain altitude from the altitude of a
neighbouring cell, with corners of the 8-neighbourhood
having a weight factor or

√
2/2. The direction of each

vector in the sum is given by the position of the neigh-
bour relative to the center. Figure 3 shows an example
gradient calculation: g = 108.64Ŵ + 120.35N̂ giving a
vector with angle tan−1(120.35/108.64) = 48◦ north of
west.
The gradient vector points to the direction of descent,
and its magnitude represents the steepness of the grade.
Moisture then flows downstream in the direction of the
gradient using fuzzy flow-update rules as described in a
previous section.
The inverse gradient points in the direction of ascent,
and is used to determine how wind direction is altered
by the current terrain. If a gust of wind is pointing

Figure 4: An example tornado.

into a wall, it will instead blow around it. For wind
to move around high-altitude obstacles it must there-
fore be pushed away from the direction of the inverse
gradient or, equivalently, towards the direction of the
gradient. We also incorporate an inertial factor, to give
a smoother flow pattern; we designate the average of the
gradient vector and current average wind vector as the
vector that will be approached as described in a previous
section.
Moisture is displaced by the four independent compo-
nents that comprise the wind, represented by the car-
dinal directions: ~gN , ~gE , ~gS , ~gW . The value of each
component is calculated by a fuzzy membership func-
tion. These values are then normalized, and represent
a proportion of the amount of moisture displaced to
surrounding grid sections, again as per the fuzzy flow-
update method. Similarly, water flow downstream is
simulated as a displacement of water downstream pro-
portional to the fuzzy memberships of the gradient.
Interesting weather events are also possible. Events can
be anything that affects the properties in the system
such as earthquakes, tornadoes, tsunamis, etc. We have
modeled “tornadoes” as local, non-linear dynamical sys-
tems with the stable fixed points at the center. We de-
signed a 2-dimensional dynamical system within a spec-
ified sub-grid such that a given point is fixed point in
a stable spiral [Strogatz, 2001]. The tornado moves by
slightly displacing the fixed point at each iteration and
reconstructing the dynamical system around it. The
wind in the surrounding cells then adapts to this tur-
bulence using the vector propagation rules found in a
previous section. Figure 4 shows a static screenshot of
a tornado on a flat terrain.

An Adaptive Reputation System

A player’s in-game reputation is often an important
component of the game environment, particularly for
simulation and role playing games. Player actions that
harm or help computer-controlled characters should re-
sult in a logically consistent reaction to the player, giv-
ing a sense of reality to the game environment. This

is necessarily a dynamic property—player reputations
need to be constantly updated, and should also amelio-
rate over time and distance.
There have been some commercial attempts at creat-
ing a general, flexible reputation system, but results
have been disappointing [Brockington, 2003]. Our ap-
proach was inspired by the Dungeons & Dragons repu-
tation system [Collins et al., 2004], which states that as
a player progresses his or her reputation will rise by per-
forming “heroic deeds.” Symmetrically, of course there
should also be the inverse property, to degrade reputa-
tion by performing negative actions.
In order to allow reputation to more realistically dis-
perse, we employ a word-of-mouth model to flow repu-
tation events. A game character’s reputation is built by
the spread of hearsay amongst the populace; flow vec-
tors modeling the communication patterns of the general
populace in each grid section are used to describe the
direction in which word of a positive or negative action
will spread. For our example system we developed a
virtual communication terrain which, as in the weather
example, is represented as a discrete, adapting vector
field. The difference is that the vectors on this vector
field do not change with respect to a static value such as
the gradient. These vectors are bent towards the sum
of agents’ velocity vectors currently occupying the cor-
responding grid cell and averaged out to the surround-
ing cells as explained in the section on vector averaging
and propagation. The same wind model used in our
weather system then traces out the flow of reputation
information. Trade route popularity and connections
in a commercial game could be derived from the rela-
tive movements of other player characters. In our case
we simulated route popularity by tracking movements of
semi-randomized agents moving between cities following
smooth curved paths choosing destinations probabilisti-
cally based on distance and city size to discover trade
routes. Figure 5b shows an example of communication
terrain constructed in this manner.
Positive and negative reputation points are created on
a grid section when an event occurs that would affect
someone’s reputation: rescuing the princess, killing a
commoner, stealing from tavern, etc., and are propor-
tional to the severity of the event. These points are
displaced via the flow, and also dissipate at a slow rate.
For each point that dissipates on a grid section, the rep-
utation of the player is altered at that location. This
process repeats until all the reputation points have dis-
sipated, causing a local alteration in the player’s repu-
tation.

EXPERIMENTS AND ANALYSIS OF DATA

We conducted tests on both systems, to assess aesthetic
quality, and also to quantitatively ensure the systems
were stable and efficient; these are described in Ta-
ble 1. The 3rd column describes the test data, either

a)

b)

Figure 5: Screenshots of a Reputation test in action. The
lines are the paths of the agents, the white triangles are the
agents, and the circles are the cities which agents travel to
and from. In a) the blue (lighter) smudges are the reputation
points spreading. b) shows the communication terrain.

vAVG

TARGETvGRADv

Figure 6: Example of obtaining ~vTARGET when g = 0.8.

Test Type (threads) Map GUI System

1 Weather N. Korea yes UP
2 Weather Pakistan yes UP
3 Weather Pakistan no UP
4 Weather Pakistan no MP
5 Weather (2) Pakistan no MP
6 Weather (4) Pakistan no MP
7 Reputation 62 x 50 no UP
8 Tests 3 and 7 combined UP

Table 1: Testing scenarios.

an altitude map of North Korea (48x40), or of Pakistan
(62x50), obtained by downsizing more detailed maps
from [Rojas et al., 2003]. The fourth column indicates
whether the graphical user interface of our testing was
present. Some tests were performed on a uniprocessor
Pentium 4 1.70Ghz with 528M RAM (UP in column 5).
Other tests designed to show scalability launch multiple
computation threads, each assigned responsibility for a
portion of the grid. Every iteration grid calculations are
done independently and concurrently by these threads,
and synchronized for the simultaneous update. These
were performed on a quad-processor AMD Opteron 844
(1.80Ghz) with 3.6G RAM (MP in column 5). Every
test lasted at most 10000 iterations.
The Weather tests are composed of tests 1–5. In each
case all the wind vectors start pointing eastwards with
a magnitude of 50, as shown in Figure 7a. This is an
initial state far from any final state (Figure 7b), and
so represents an extremal test for adaptation. We also
included a tuning parameter, an average bias value g =
0.9. When calculating the vector to approach in the
gradient-bending method of the vector averaging and
propagation section this constant places bias on either
the gradient (0 <= g < 0.5), or the current average
(0.5 < g <= 1). The weighted average of these is the
vector that is approached:

~vTARGET = g · ~vAV G + (1− g)~vGRAD

The update rule then becomes a rule that approaches
the target: R1 : θi,j ← θi,j + γ(θTARGET − θi,j), as
seen in Figure 6. This results in a smoother, if slower
adaptation.
The Reputation tests were made up of simulations of
agents moving from town to town, as described in a
previous section. The probability that an agent would
travel from one town to another at any given iteration
was set to 0.9. The source city was chosen randomly,
weighted by the size of the city (larger cities produce
more trade, and hence more communication sources),
and the destination city was chosen based on a combined
weight determined by city size divided by the square of
relative distance (short trips are more common). Repu-
tation events would normally come from player actions;
in our tests they are manually generated during testing.

a)

b)

Figure 7: Screenshots of a) before the Weather Test 1 b)
end of Weather Test 1.

Tn t̄i(ms) t̄i1(ms) t̄i2(ms) t̄i3(ms)
1 43.91 29.81 9.6 4.5
2 92.97 64.37 21.5 7.1
3 64.22 44.68 14.34 5.2
4 46.32 28.61 11.61 6.1
5 28.85 16.41 8.3 4.14
6 23.41 12.56 7.5 3.35
7 44.68 34.52 10.12 0.02
8 104.5 74.4 24.74 5.35

Table 2: Performance results for the tests.

Performance Results

Experimental results are summarized in Table 2. In all
cases, t̄i represents the average simulation time per it-
eration of calculations. In the Weather tests t̄i1 , t̄i2 ,
t̄i3 represent the average time spent on the gradient-
bending and averaging, moisture spreading, and rain
displacement, respectively. In the Reputation tests,
these times represents the vector-averaging, reputation
point spreading, and the vector-bending due to agents’
influence, respectively. In the combined test, these times
(except t̄i) are simply added together.

Results are encouraging. Tests 1 and 2 show a linear
increase in average iteration cost with respect to grid
size: the Pakistan map is 61% larger than the North
Korea map, and average iteration time is 58% larger.

Scalability is shown in tests 4, 5, and 6. Average iter-

 30
 25
 20
 15
 10
 5
 0

 4000 3000 2000 1000 0

"test3p.dat"

Figure 8: ∆mask(radians) vs. iteration number in Weather
test 3.

ation cost drops by a factor of 1.98 using 4 threads for
computation. Although this is far from ideal, these re-
sults still show that parallel computation is applicable
here.

The value of casting these problems into a generic frame-
work is evident in test 8 in comparison to 3 and 7. By
combining the tests we allow not only a shared imple-
mentation, but also sharing of resources; this costs some-
what less than doing both tests separately, even though
the tests do not use clever collaborative methods. We
expect future additions to behave similarly.

Convergence Properties

Since our approach uses an iterative update strategy it
is important to know how long it may take for a cal-
culation to converge to appealing and stable results.
Convergence can be guaranteed in the finite domain of
computer-representable real numbers by ensuring our
flow and gradient calculations are monotonic functions.
This is unfortunately not easy to ensure given the use of
complex, stateful (history-sensitive) functions in game
simulation. We thus investigate convergence experimen-
tally for our example systems.

Convergence in the Reputation test is not meaningful.
Agent behaviour is deliberately non-deterministic in or-
der to produce a complex communication terrain, and
actual flow of reputation points is damped, and so triv-
ially converges from any constant number of reputation
events.

In the Weather case, we are trying to adapt a quantity
(wind) within the system to its surroundings. To mea-
sure how this quantity is changing we add up all the
proposed change in angles over all grid cells at every it-
eration and call this the ∆mask; the results for test 3 are
shown in Figure 8. In most cases it takes less than 5000
iterations to converge to the point where ∆mask is con-
sistently extremely small (< 10−12) or reach a periodic
cycle. Note that for certain stability it is required that

 4000

 3000

 2000

 1000

 0
 1 0.8 0.6 0.4 0.2 0

"test_g_bounded.dat"

Figure 9: Iterations until convergence vs. g graph, with
γ = 0.1.

we restrict the grid so that neighbours on the grid cell
extremes are only those cells closer to the center and
not “wrapped around” to the other extreme of the grid,
forcing a bounded topology unlike the torus. We are
currently studying the causes of instability in the torus
topology. Less converged, but quite acceptable results
are however achieved much sooner, typically by within
1000 iterations. In Figure 8 random perturbations to
terrain altitude are performed on the grid at iterations
2000 and 3000; these small adaptations converge very
quickly, in just a couple hundred iterations.

The bias parameter has a direct influence on the time it
takes to converge. Figure 9 shows the number of itera-
tions before convergence (variation less than 10−12) for
a selection of g values. Convergence in general behaves
non-linearly. This is not surprising given the complexity
of our system, but it does indicate the importance of ex-
perimental validation in the implementation. Note that
our examination of slow and non-convergence shows that
when it occurs it is typically expressed visually as con-
tinuous change localized to just one or two very small
areas; the appearance is still overall quite good, and in
a continuously adapting situation is difficult to discern.

CONCLUSION AND FUTURE WORK

Environmental adaptation in persistent-state games is a
relatively unresearched area. We have presented a gen-
eral framework to describe such systems that is generic
and efficient. We have shown that our approach is suit-
able for adaptive content management and creation. In
order to do so we defined implementations within our
framework for two very different forms of content, basic
weather simulation, and an in-game player reputation
system. Both systems respond to dynamic changes in
input data, and we have experimentally demonstrated

the feasibility of the technique, both in terms of per-
formance and the ability to converge to good, aesthetic
results.
Our approach is of course largely a proof of concept
demonstration. The practical value of our technique
would be best measured in the context of a commercial,
large scale, multiplayer game, though research access
to such an environment is difficult to acquire. Even in
the context of a prototype, however, performance im-
provements can be realized; our implementation was
designed for easy exploration of ideas more than per-
formance, and a number of optimizations are possible.
We’ve proved that the framework is scalable in two dif-
ferent ways: computationally by using concurrency, and
content-wise by efficient re-usage of resources for com-
bined systems. An expansion of useful, flow-based con-
tent is also of value, and we are investigating the expres-
sion of such concepts as adaptive economies, politics,
and law in our system.

ACKNOWLEDGMENTS

This research has been supported by Le Fonds
Québécois de la Recherche sur la Nature et les Tech-
nologies and the McGill Faculty of Graduate Studies.

REFERENCES

[Baxes, 1994] Baxes, G. A. (1994). Digital Image Pro-
cessing. John Wiley & Sons.

[Brockington, 2003] Brockington, M. (2003). Building
a reputation system: Hatred, forgiveness, and sur-
render in Neverwinter Nights. In Alexander, T., edi-
tor, Massively Multiplayer Game Development, pages
454–563. Charles River Media.

[Burago et al., 2001] Burago, D., Burago, Y., and
Ivanov, S. (2001). A Course in Metric Geometry.
American Mathematical Society.

[Carmel and Markovitch, 1998] Carmel, D. and
Markovitch, S. (1998). Model-based learning of inter-
action strategies in multiagent systems. Journal of
Experimental and Theoretical Artificial Intelligence,
10(3):309–332.

[Collins et al., 2004] Collins, A., Decker, J., Noonan,
D., and Redman, R. (2004). Unearthed Arcana. Wiz-
ards of the Coast.

[Enterprise, 2004] Enterprise, N. E. S. (2004). GSFC
earth science enterprise water and energy cycle.
http://gwec.gsfc.nasa.gov.

[Fisher et al., 2003] Fisher, R., Perkins, S., Walker,
A., and Wolfart, E. (2003). Mean filter.
http://homepages.inf.ed.ac.uk/rbf/HIPR2/

mean.htm.

[Gardner, 1970] Gardner, M. (1970). The fantastic com-
binations of John Conway’s new solitaire game “life”.
Scientific American, pages 120–123.

[Haynes and Wainwright, 1995] Haynes, T. D. and
Wainwright, R. L. (1995). A simulation of adaptive
agents in hostile environment. In George, K. M.,
Carroll, J. H., Deaton, E., Oppenheim, D., and
Hightower, J., editors, Proceedings of the 1995 ACM
Symposium on Applied Computing, pages 318–323,
Nashville, USA. ACM Press.

[Macedonia et al., 1994] Macedonia, M. R., Zyda,
M. J., Pratt, D. R., Barham, P. T., and Zeswitz, S.
(1994). NPSNET: A network software architecture for
large-scale virtual environment. Presence, 3(4):265–
287.

[McCuskey, 2000] McCuskey, M. (2000). Fuzzy logic for
video games. In DeLoura, M., editor, Game Program-
ming Gems, pages 319–329. Charles River Media.

[Mellon, 2003] Mellon, L. (2003). Research opportu-
nities in game development. Tutorial at: PADS’03
Workshop on Parallel and Distributed Simulation.

[Rojas et al., 2003] Rojas, E., Hijmans, R. J.,
and Guarino, L. (2003). DIVA-GIS.
http://diva.riu.cip.cgiar.org.

[Russell and Norvig, 2002] Russell, S. and Norvig, P.
(2002). Artificial Intelligence. Prentice-Hall, 2nd edi-
tion.

[Spronk et al., 2003] Spronk, P., Sprinkhuizen-Kuyper,
I., and Postma, E. (2003). Online adaptation of game
opponent AI in simulation and in practice. In Pro-
ceedings of the 4th International Conference on In-
telligent Games and Simulation (GAME-ON 2003),
pages 93–100.

[Stanford, 1996] Stanford, M. I. (1996). Uses and sub-
versions of SimCity 2000.

[Steels, 1994] Steels, L. (1994). The artificial life roots
of artificial intelligence.

[Strogatz, 2001] Strogatz, S. H. (2001). Nonlinear Dy-
namics and Chaos: With Applications to Physics,
Biology, Chemistry and Engineering. Perseus Books
Group.

[Watsen and Zyda, 1998] Watsen, K. and Zyda, M.
(1998). Bamboo: A portable system for dynami-
cally extensible, real-time, networked, virtual envi-
ronments. In IEEE Virtual Reality Annual Interna-
tional Symposium (VRAIS’98), pages 252–259, At-
lanta, Georgia.

