
1 Adaptations of Q-learning

Below is the classic Q-learning algorithm [3], taken from [2, Sec 6.5]:

Q1. Consider a 5x5 grid world (i.e. |S+| = 25 states) where an agent has actions { Left, Right,
Up, Down, Stay } which move the agent to adjacent cells as expected or remain still. The agent
starts on the bottom-left square, gets a constant reward R = −0.0001 every step regardless of the
action taken or state reached, except R = +100 when reaching the top-right (terminal) cell, ending
the episode. How does a Q-learning agent learn to act in this problem?

Q2. Now consider the classic game of Tic-Tac-Toe. What are the states, actions, and rewards?
How can Q-learning be adapted to play and/or solve Tic-Tac-Toe? Hint: there are two distinct
interpretations. One of them makes explicit use of these identities: R1 = −R2, and Q1(S,A) =
−Q2(S,A).

2 Counterfactual Regret Minimization

Counterfactual regret (CFR) minimization has been an important algorithm in Poker AI research
for finding approximate Nash equilibria in two-player zero-sum games [4].

Players start with uniform random initial policies π = (π1, π2), and empty tables R(s, a) and S(s, a)
and every iteration proceeds with three steps (notation glossary below):

Evaluate π : compute counterfactual values qcπ,i(s, a) and vπ,i(s) for all states s, and actions a ∈
A(s), and accumulate immediate regret r(s, a) = qcπ,i(s, a)− vπ,i(s) for all states and actions

Update tables : For all s, a ∈ A(s): updates the accumulated regret table R(s, a) = R(s, a) +
r(s, a), and average strategy tables S(s, a) = S(s, a) + ηπτ(s)(s)π(s, a)

Update policy : For all s, a ∈ A(s): update the policy (using regret matching [1]), define
x+ = max(x, 0):

π(s, a) =


R+(s,a)∑

a∈A(s)
R+(s,a)

if denominator is positive;

1
|A(s)| otherwise.
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The average policy, π̄(s, a) = S(s,a)∑
a∈A(s)

S(s,a)
, converges to an approximate Nash equilibrium in two-

player zero-sum games.

Notation glossary:

• s is an information state

• A(s) is the set of legal actions at s

• τ(s) is the player to play at s

• π(s) is the policy at state s (probability distribution over A(s))

• π(s, a) is the probability of taking action a at info. state s

• h ∈ s is a legal history in state s

• z is a terminal history (final state)

• η is a reach probability. Specifically:

– ηπ(h) is the probability of reaching history h given players are playing with π

– ηπi (h) is only player i’s contribution to the reach probability

– ηπ−i(h) is all other players’ (except i) contribution to the reach probability

– ηπi (s), for i = τ(s), is a shorthand for ηπi (h) for any h ∈ s, since they are all the same due
to perfect recall)

– ηπ(h, z) is the reach probability of playing from history h to z

• ui(z) is the utility to player i of terminal history z

• Z(s, a) is the set of histories h ∈ s paired with the terminal histories reachable by any history
in s and after having taken action a

• qcπ,i(s, a), where i = τ(s), is defined to be:

qcπ,i(s, a) =
∑

h,z∈Z(s,a)

ηπ−i(h)ηπ(h, z)ui(z)

• vcπ,i(s) =
∑
a∈A(s) π(s, a)qcπ,i(s, a)
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