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Abstract
We introduce and analyze a class of algorithms,
called Mirror Ascent against an Improved Oppo-
nent (MAIO), for computing Nash equilibria in
two-player zero-sum games, both in normal form
and in sequential form with imperfect informa-
tion. These algorithms update the policy of each
player with a mirror-ascent step to maximize the
value of playing against an improved opponent.
An improved opponent can be a best response, a
greedy policy, a policy improved by policy gra-
dient, or by any other reinforcement learning or
search techniques. We establish a convergence re-
sult of the last iterate to the set of Nash equilibria
and show that the speed of convergence depends
on the amount of improvement offered by these
improved policies. In addition, we show that un-
der some condition, if we use a best response as
improved policy, then an exponential convergence
rate is achieved.

1. Introduction
This paper considers the problem of computing a Nash
equilibrium for two-player zero-sum games in two types
of games: normal-form games and imperfect information
games (IIGs) in extensive form. We introduce and analyze a
class of algorithms, called Mirror Ascent against an Im-
proved Opponent (MAIO), which updates the policy of
each player by following a step of mirror-ascent for maxi-
mizing its expected reward against an improved policy for
the opponent. The actual implementation of the algorithm
depends on how we choose to define the ‘improved policy’.

If we use the best response (BR) (the opponent’s best policy
against the current player) as improved policy we show that,
under some condition, the algorithm (MAIO-BR) produces
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a sequence of policies that converges to the set of Nash
equilibria at an exponential rate. By that we mean that
some weighted `2 distance between the policies produced
by the algorithm and the set of Nash equilibria decreases as
O(exp(−βt)), for some problem-dependent constant β >
0, where t is the number of iterations of the algorithm.

However, in large IIGs it may be computationally pro-
hibitive to compute a full best response at every iteration
(since this is equivalent to solving an optimal control prob-
lem). Our analysis shows that the speed of convergence to
the set of Nash equilibria depends on a measure (called the
improvement) of how much each player is able to improve
its own policy against a fixed opponent. In principle, the best
response provides the best possible improvement, but due
to its high computational cost other less-computationally
expensive strategies can provide an improved policy as well
at a lower computational cost. Examples of improved po-
lices are the greedy policy (one-step policy improvement),
a multi-step improved policy, such as in Monte Carlo Tree
Search (MCTS), a policy improved by policy gradient, or
by any other reinforcement learning or search algorithm.
Our analysis shows convergence for all such cases, which
opens new avenues for designing algorithms with conver-
gence guarantees, while offering a trade-off in terms of
computational cost versus convergence speed toward the
Nash equilibrium.

Literature context: This work sits in the context of com-
puting Nash equilibria for sequential games. One can dis-
tinguish several approaches to find a Nash equilibrium: (i)
Linear programming has been the first approach applied
to compute minimax equilibrium in imperfect information
games (Von Stengel, 1996; Koller et al., 1994; Koller and Pf-
effer, 1997) using sequence-form reductions methods. But
these methods remain quite inefficient as the size of the
action space grows even if linear programming methods
(Khachiyan, 1980; Karmarkar, 1984; Nesterov and Todd,
1998) achieve exponential convergence to Nash equilibria
in value, with a rate independent of game-dependent quan-
tities. (ii) Fictitious play (FP) has been considered in the
tabular case in (Heinrich et al., 2015) and with function
approximation (Heinrich and Silver, 2016). In the normal
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form case, FP has a proven convergence speed to the Nash
equilibrium of O(t

−1
m+n−2 ), where m and n are the num-

ber of actions of each players. (iii) Non-smooth convex
optimization has been one of the techniques providing the
fastest rates of convergence (Nesterov, 2005; Hoda et al.,
2010). In imperfect information games, one can achieve
a rate of convergence of O( 1

t ) (Gilpin et al., 2007; Kroer
et al., 2018) with an appropriate smoothing and an exponen-
tial convergence O(exp(−κt)) with a problem dependent
constant κ (Gilpin et al., 2012) similar to ours. In terms
of computational complexity, (Gilpin et al., 2012) requires
processing a `2-projection onto the global space of strate-
gies (sets of realization plans, also called treeplex). They
propose an iterated algorithm to perform this projection,
but this step is computationally much more involved than
simple projections onto the simplex. On the contrary, our
algorithm updates the policy at each state individually (e.g.
for `2 regularization, we do a simple `2-projection onto
the simplex at each state), which has a much lower compu-
tational complexity per iteration than projecting onto the
treeplex. (iv) Extragradient or optimistic mirror descent
methods have been proven to converge to a Nash equilib-
rium (Korpelevich, 1976) with possibly an exponential rate
in unconstrained spaces (Mokhtari et al., 2020) but is not (to
the best of our knowledge) applied in sequential form games.
Furthermore, the analysis of extragradient methods is mostly
done in unconstrained domains whereas the constrained do-
main considered here (where the constraints are the space of
stochastic policies) remain more involved. The most closely
related extragradient method in this domain is Optimistic
Multiplicative-Weights-Update (OMWU) (Daskalakis and
Panageas, 2018) which provides convergence guarantees
to the Nash equilibrium of the last iterate (whilst most of
the literature shows convergence of the average strategy
(Daskalakis et al., 2011; Rakhlin and Sridharan, 2013; Kan-
garshahi et al., 2018) at a rate of O(1/t)). In Daskalakis
and Panageas (2018), the authors conjecture that this tech-
nique can be useful to prove the convergence of the last
iterate of many algorithms. Our analysis generalizes this
approach beyond OMWU and beyond normal-form games.
A related approach uses the Frank-Wolfe method to com-
pute Nash equilibria in normal-form games (Gidel et al.,
2016), although convergence is attained at the same rate as
for fictitious play. (v) Regret minimization has been ex-
tensively considered in games since the average strategy of
self-playing no-regret algorithms converges to a Nash equi-
librium (Rakhlin and Sridharan, 2013; Kangarshahi et al.,
2018) and provides a fast rate of O( 1

t ) (Syrgkanis et al.,
2015). This technique is usually studied in the discrete time
setting but has also been looked at in continuous time (Mer-
tikopoulos et al., 2018). Finally, the main state-of-the-art
methods in IIGs remain counterfactual regret minimiza-
tion (CFR) (Zinkevich et al., 2008) and has been studied
extensively in zero-sum imperfect information games. In

its most simple form all players learn in self-play to update
their strategy at each information state according to a regret
minimizing algorithm on the counterfactual value of the
joint policy. In that setting the average policy played by all
players converges to a Nash equilibrium with a O(1/

√
t)

rate. The standard method has seen many improvements (for
example the CFR+ algorithm of (Tammelin et al., 2015)).
The convergence of an iterate (not necessarily the last) can
be achieved if players use a regret minimization strategy
against a best responding opponent (Johanson et al., 2012;
Lockhart et al., 2019) in time O(1/(p

√
t)).

Our contribution: This work sits at the intersection of
counterfactual regret-minimization and extragradient ap-
proaches. We prove that the last iterate of MAIO converges
to the set of Nash equilibria at a rate which depends on how
much we are able to compute an improved policy at each
step. When the improved policy is the best response, we
achieve an exponential convergence (under some condition).

We also show convergence when the improved policy is
the result of an extra-gradient step, or simply a greedy pol-
icy (much cheaper to compute than a best response) or a
multi-step improvement such as implemented by a MCTS
algorithm. This sheds a new light on the relation between
seemingly different approaches (e.g., CFR-BR and extragra-
dient methods) and proposes a whole spectrum of methods
based on improvements.

Outline: We start by introducing MAIO in the normal-
form game setting, then derive several variants depending
on the type of regularization that is used (entropy or `2). An
exponential convergence rate is achieved when using the
best response as improved opponent (MAIO-BR). Subse-
quently, we consider the IIG setting, reporting convergence
results and discussing the trade-off between (i) the compu-
tational complexity of finding an improved opponent and
(ii) the speed of convergence toward the Nash equilibria.
Finally, Section 4 reports numerical experiments on ma-
trix games. The appendix contains all proofs as well as
additional numerical experiments on IIGs.

2. Normal form games
In this section we consider the setting of games in normal
form. The two players are indexed by i ∈ {1, 2}. A policy
profile π refers to the set of policies used by each player
π = {π1, π2}, where each policy πi ∈ ∆(Ai) is a distri-
bution over actions Ai available to player i. For simplicity
we will omit the player index when it is obvious from the
subscript, and use parentheses instead of braces, writing
π = (π1, π2) = (π2, π1). We will denote by A a generic
action space when the reference to a specific player is not
important.
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The value of a policy profile π = (π1, π2) is V π def
=

π>1 Rπ2, where R is the payoff matrix of the game. Player 1
is trying to maximize the value whereas player 2 intends to
minimize it. From the minimax theorem (Neumann, 1928),
the (minimax) value of the game is

V ∗
def
= max

π1

min
π2

V (π1,π2) = min
π2

max
π1

V (π1,π2)

and is achieved for any π ∈ Π∗, where Π∗ is the set of Nash
equilibria of the game.

Additional notations: We write V π1 = V π and V π2 =
−V π , so each player i ∈ {1, 2} is trying to maximize (over
πi) the value V πi . We write Qπ−ii for the payoff vector
of player i against the opponent’s policy π−i (where −i
denotes player i’s opponent). Thus Qπ2

1 = Rπ2 and Qπ1
2 =

−R>π1. Notice that this notation will be further extended
to a state-action Q-value function in the section on IIG.

The MAIO algorithm (defined below) will make use of the
notion of an ‘improved’ policy defined below.

Definition 1 (Improved policy). For any two policy profiles
π and π̄, we write I(π̄, π) for the ‘improvement’ of π̄ over
π, defined as

I(π̄, π)
def
=
∑

i∈{1,2}

V
(π̄i,π−i)
i −V (πi,π−i)

i =
∑

i∈{1,2}

V
(π̄i,π−i)
i .

We say that a policy π̄ improves over π if I(π̄, π) ≥ 0.

2.1. Mirror Ascent against an Improved Opponent

We now introduce Mirror Ascent against an Improved Oppo-
nent (MAIO). Consider a strongly convex and continuously-
differentiable function ϕ : Ω → R, called the regular-
izer, where the domain Ω ⊂ R|A| contains the simplex
∆(A), and write Dϕ the associated Bregman divergence:
for y, y′ ∈ Ω,

Dϕ(y, y′)
def
= ϕ(y)− ϕ(y′)−∇ϕ(y′) · (y − y′).

The MAIO algorithm defines a sequence of policies
(πi,t)t≥0 as follows: for all i ∈ {1, 2}, πi,0 is the uniform
policy, and for all t ≥ 0,

πi,t+1 ∈ arg max
πi∈∆(Ai)

[
ηt πi ·Q

π̄−i,t
i −Dϕ(πi, πi,t)

]
, (1)

where ηt > 0 is a learning rate. For each player i, this is a
mirror-ascent step (Nemirovski and Yudin, 1983; Bubeck,
2015; Lattimore and Szepesvári, 2020) on the value πi 7→
πi · Q

π̄−i,t
i = V

(πi,π̄−i,t)
i of the policy πi playing against

the improved opponent π̄−i,t regularized by Dϕ(πi, πi,t),
which penalize policies away from the previous policy πi,t.
This definition corresponds to the so-called proximal or

trust region view of mirror-descent (MD). Alternatively, an
equivalent definition is given in terms of the mirror map
∇ϕ : Ω→ R|Ai| (see e.g., (Bubeck, 2015)):

πi,t+1 = arg min
πi∈∆(Ai)

Dϕ(πi, yi,t+1),

where yi,t+1 is the (unique) point of R|Ai| such that

∇ϕ(yi,t+1) = ∇ϕ(πi,t) + ηtQ
π̄−i,t
i .

Specifically, a gradient descent step is performed in the
mirror space (by application of the mirror map ∇ϕ). Un-
der some assumptions (see e.g. Lattimore and Szepesvári
(2020)), MD is equivalent to Follow the Regularized Leader
(FTRL). Intuitively, here FTRL would accumulate the Q-
values of the improved opponent and derive the policy as a
regularized projection step:

πi,t+1 ∈ arg max
πi∈∆(Ai)

[
πi ·

t∑
s=0

ηsQ
π̄−i,s
i − ϕ(πi)

]
.

We now consider two natural choices of regularizers, the
entropy regularizer (for which MD is equivalent to FTRL)
and the `2-regularizer (for which it is not).

2.2. Entropy regularization

For the negative entropy regularization ϕ(π)
def
=∑

a π(a) log π(a) the domain Ω is the interior of ∆(A)
and the Bregman divergence is the KL divergence:
Dϕ(π, π′) = KL(π, π′) =

∑
a π(a) log π(a)

π′(a) . Thus
MAIO produces the sequence of policies πi,t+1(a) ∝
πi,t(a) exp

(
ηtQ

π̄−i,t
i (a)

)
. In this case, MD coincides with

FTRL, and the policy is the softmax of the accumulated
values: πi,t+1(a) ∝ exp

(∑t
s=0 ηsQ

π̄−i,s
i (a)

)
.

2.3. `2-regularization

For the `2-regularization ϕ(π)
def
= 1

2‖π‖
2
2 = 1

2

∑
a π(a)2,

and the domain Ω = R|A|, the mirror map is the identity
(∇ϕ(π) = π) and the Bregman divergence is half the square
Euclidean norm Dϕ(π, π′) = 1

2‖π−π
′‖22. MAIO produces

the policies:

πi,t+1 = arg max
πi∈∆(Ai)

[
ηtπi ·Q

π̄−i,t
i − 1

2
‖πi − πi,t‖22

]
= arg min

πi∈∆(Ai)

∥∥πi − (πi,t + ηtQ
π̄−i,t
i

)∥∥2

2

which is the projected gradient descent algorithm:

πi,t+1 = P∆(Ai)

(
πi,t + ηtQ

π̄−i,t
i

)
,

where P∆(Ai) is the `2-projection onto the simplex ∆(Ai)
(also called sparsemax operator, see e.g., (Martins and As-
tudillo, 2016), because it induces sparsity). Notice that this
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algorithm is different from a FTRL (with `2 regularization)
version of the algorithm, which would be defined as

πi,t+1 = P∆(Ai)

( t∑
s=0

ηsQ
π̄−i,s
i

)
.

The results we present in the next section apply to the MD
version; it is an open question to whether similar results
could be obtained with the FTRL version.

2.4. Convergence to the set of Nash Equilibria

First, we recall that ϕ is a strongly convex function with
respect to some norm ‖ · ‖ and with modulus σ, if for any
y, y′ ∈ Ω,

ϕ(y) ≥ ϕ(y′) +∇ϕ(y′) · (y − y′) +
σ

2
‖y − y′‖2. (2)

In the two cases we have considered previously, we have
that the `2-regularizer ϕ(π) = 1

2‖π‖
2 is strongly convex

w.r.t. `2-norm with modulus σ = 1, and the entropy regular-
izer ϕ(π) =

∑
a π(a) log π(a) is strongly convex w.r.t. `1-

norm with modulus σ = 1 (from Pinsker’s inequality, see
e.g., Csiszar and Korner (1982)).

For a given regularizer ϕ, we write Jπ∗ the Bregman diver-
gence between any policy π and a Nash equilibrium π∗:

Jπ∗(π)
def
=

∑
i∈{1,2}

Dϕ(π∗i , πi).

The main property of MAIO is that at each iteration this
distance to any Nash eq. decreases as a function of how
much the policy π̄t improves over the current policy πt.

Theorem 1. Let π∗ ∈ Π∗ be any Nash equilibrium. Let ϕ
be a strongly convex function w.r.t. the `p-norm with modu-
lus σ, and let q = 1/(1− 1/p). MAIO builds a sequence of
policies (πt) defined by (1) such that

Jπ∗(t+ 1) ≤ Jπ∗(t)− ηtI(π̄t, πt) + cη2
t ,

where Jπ∗(t)
def
= Jπ∗(πt), c def

= 4
σ |A|

2/qQ2
max and Qmax is

the maximum absolute entry of the reward matrix R.

In particular, with the choice ηt = I(π̄t,πt)
2c , we have

Jπ∗(t+ 1) ≤ Jπ∗(t)−
I(π̄t, πt)

2

4c
.

This result says that as long as we can find a policy π̄t
which improves over the current policy πt (in the sense of
I(π̄t, πt) > 0), then MAIO produces a policy πt+1 which
is closer to any Nash equilibrium than the previous policy.
Since we know that the set of policies which cannot be
improved are the set of Nash equilibria (by definition of

the improvement I), we deduce that the speed at which
MAIO converges to the set of Nash equilibria depends on
how much the policies π̄t improve over πt.

In the next sub-section we consider the best response as
improved policy.

2.5. MAIO with the best response

The policy π̄ which improves the most over π (in the sense
of maximizing π̄ 7→ I(π̄, π)) is the best response, i.e.

b(π)
def
∈ arg max

π̄
I(π̄, π) = arg max

(π̄1,π̄2)

(
V (π̄1,π2)−V (π1,π̄2)

)
.

We now show that the improvement of the best response over
any policy π is lower-bounded by the `2-distance between
π and the set of Nash equilibria.

Define I∗(π)
def
= I(b(π), π) = maxπ̄ I(π̄, π) to be the im-

provement of the best response over policy π, also called
exploitability, see (Ponsen et al., 2011).
Lemma 1. There exists a constant κ > 0 (which depends
on the matrix R only) such that for any policy π we have

I∗(π) ≥ κ min
π∗∈Π∗

‖π − π∗‖2,

where the norm between policy profiles is ‖π − π′‖2
def
=(∑

i∈{1,2} ‖πi − π′i‖22
)1/2

This result, combined with Theorem 1 with the `2 regular-
izer, implies that MAIO using the best response as improved
opponent (MAIO-BR) converges to the set of Nash equilib-
ria with an exponential rate:
Theorem 2. Consider the MAIO-BR algorithm (MAIO with
best response as improved opponent) with `2-regularizer.
Choose the learning rate ηt = I(π̄t,πt)

2c . Then

min
π∗∈Π∗

‖π∗ − πt‖2 ≤ e−βt min
π∗∈Π∗

‖π∗ − π0‖2,

with β def
= κ2/(16|A|Q2

max).

Proof. From Theorem 1 (with p = q = 2 and choosing ϕ to
be the `2 regularizer) we have, for any π∗ ∈ Π∗, Jπ∗(t) =
1
2‖π

∗ − πt‖22, thus, with c = 4|A|Q2
max,

‖π∗ − πt+1‖22 ≤ ‖π∗ − πt‖22 −
I∗(πt)

2

2c

≤ ‖π∗ − πt‖22 −
κ2

2c
min
π∗∈Π∗

‖π∗ − πt‖22,

where the last inequality comes from Lemma 1. Taking the
minimum over Π∗,

min
π∗∈Π∗

‖π∗ − πt+1‖22 ≤ min
π∗∈Π∗

‖π∗ − πt‖22
(

1− κ2

2c

)
.

Thus minπ∗∈Π∗ ‖π∗−πt‖2 decreases exponentially fast and
the result holds with β = κ2/(4c) = κ2/(16|A|Q2

max).
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2.6. Interpretation of κ

Lemma 1 yields the existence of a constant κ > 0 that
controls the exponential rate of convergence of the MAIO-
BR to the set of Nash equilibria. Intuitively, κ measures the
flatness of exploitability function π 7→ I∗(π) near the set
of Nash equilibria. More precisely κ is a lower bound on
directional derivatives of I∗(π) for π /∈ Π∗. This quantity
also appears in the analysis of the first-order smoothing
method due to Gilpin et al. (2008; 2012), with detailed
analysis of the quantity itself appearing in Mordukhovich
et al. (2010). We also provide an interpretable lower bound
on κ in Appendix D.
Example 1. To get some intuition about κ, let us con-
sider the simple game defined by the reward matrix R =(

0 1− ε
2 1

)
. The Nash eq. is π∗1 = (0, 1) and π∗2 = (0, 1)

and the game has a minimax value of 1. We can prove that
the derivative of π1 7→ I∗((π1, π2)) around π∗ is lower
bounded by ε and that I∗(π) ≥ κ‖π − π∗‖2 for κ = ε/

√
2

(see Appendix E). And indeed, numerical results show that
MAIO-BR’s exponential convergence to the Nash eq. de-
pends on the value of ε (see Section 4).
Remark 1. We achieve exponential convergence rate using
the `2 regularization. An interesting question is whether an
exponential convergence is achieved in the case of entropy
regularization as well. We conjecture that this is true if and
only if (at least) one Nash eq. is an interior point (strictly
stochastic policy). See some arguments for this conjecture
in Appendix O and the experiments in Section 4.
Remark 2. Our results concern the distance to the Nash
eq. in policy space, rather than in value space, which ex-
plains the dependence of the bounds on κ, which encodes
the flatness of the exploitability function close to the set
of Nash equilibria. In general, bounds on policy distance
can be straightforwardly translated to and from bounds on
value approximation via multiplication by game-dependent
constants, such as κ and the maximum spread of rewards
available in the game (see Lemma 2 for the IIG case).

We now present the extension of MAIO to IIGs.

3. Sequential Imperfect Information Games
3.1. Notations

In the setting of imperfect information games (IIGs) in se-
quential form, we assume the players {1, 2} play sequen-
tially. The case of simultaneous actions could be han-
dled via non-observability of the opponent’s actions. Let
H = ∪i∈{1,2}Hi be the set of possible histories, with Hi

being the histories from which player i ∈ {1, 2} may play.
Similarly let X = ∪i∈{1,2}Xi be the set of observations
(also called states or information nodes). We assume a de-
terministic observation process and use set notation to repre-

sent an observation x(h) that corresponds to a set of possible
histories h ∈ x. For any h ∈ H , we denote by i(h) ∈ {1, 2}
the player whose turn it is to play in h, i.e. h ∈ Hi(h).

We write p(h′|h, a) for the (sub-)probability of transitioning
from h ∈ Hi to h′ when player i = i(h) selects action
a ∈ Ai in h. The initial history h0 is drawn from some
initial distribution ρ0 and we assume a terminal state ∅
from which there is no reward. At each transition, the
probability of reaching this terminal state is p(∅|h, a) =
1−

∑
h′ p(h

′|h, a). This setting covers stochastic shortest
path (for which it is assumed that for any policy the expected
time to reach ∅ is finite), finite-time horizon (probability to
reach ∅ is 1 when the time horizon is reached, otherwise
0), and discounted infinite horizon problems (probability
to reach ∅ is 1 − γ at every transition, where γ < 1 is the
discount factor). We assume the underlying process at the
history level H is Markovian with a tree structure (i.e., there
exists a unique path from h0 to any history h ∈ H) and that
the history and action spaces are finite.

Actions are drawn from the player’s policy πi : Xi →
∆(Ai) and are a function of the observations. We write
π = {πi}i∈{1,2} = (πi, π−i) the policy whose restriction
to Xi is πi.

Finally, the reward function for each player i is denoted by
ri(h, a) and is assumed to be a deterministic function of the
history and action. The game is zero-sum thus ri = −r−i.

3.2. Reach probabilities and value function

History reach probabilities: We define the probability
of reaching a history h under a policy profile π as

µπ(h)
def
= Eh0∼ρ0

[∑
k≥0

I{hk = h}
]
,

where (hk)k≥0 is the Markov chain on H induced by the
policy π. These reach probabilities satisfy the balance equa-
tion:

µπ(h′) = ρ0(h′) +
∑
h∈H

µπ(h)
∑
a

π(a|h)p(h′|h, a), (3)

where π(a|h)
def
= πi(h)(a|x(h)).

Observation reach probabilities: We define the proba-
bility of an observation x as µπ(x)

def
=
∑
h∈x µ

π(h).

History-based value functions: We define the history-
based Q-function, for h ∈ Hi, a ∈ Ai,

Qπi (h, a) = E
[∑
k≥0

ri(hk, ak)|h0 = h, a0 = a
]
, (4)
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and the state value function:

V πi (h)=E
[∑
k≥0

ri(hk, ak)|h0 = h
]

=
∑
a∈Ai

π(a|h)Qπi (h, a).

We define the initial value function V πi as the value of the
game for player i:

V πi
def
= Eh0∼ρ0 [V πi (h0)]. (5)

Using the reach probabilities, we have

V πi =
∑
h∈H

µπ(h)
∑
a

π(a|h)ri(h, a). (6)

Value function on observations: For any state x such
that µπ(x) > 0, we define its Q-value as the convex
combination of the Q-value of the corresponding histories
h ∈ x weighted by their conditional probability µπ(h|x)

def
=

µπ(h)
µπ(x) :

Qπi (x, a)
def
=
∑
h∈x

µπ(h|x)Qπi (h, a). (7)

Thus Qπi (x, a) depends on the policy π both in terms of the
future reward collected when following π from x on, but
also in terms of the probabilities µπ(h) of reaching specific
histories h ∈ x when following π.

3.3. Perfect recall

The reach probability of any history µπ(h) is the product
along the path (h0, a0, h1, a1, . . . , hn−1, an−1, hn = h),
for some n ≥ 0 (n is the depth of the history h), of the
action probabilities π(ak|hk) and the transition probabilities
p(hk+1|hk, ak), for k ≤ n. Factorizing the probabilities per
player, we write

µπ(h) = µ0(h)
∏

i∈{1,2}

µπi (h),

where i ∈ {1, 2} corresponds to player’s i policy:
µπi (h)

def
=

∏
k=0...n−1:i(hk)=i π(ak|hk), and µ0 cor-

responds to the transition probabilities: µ0(h)
def
=

ρ0(h0)
∏
k=0...n−1 p(hk+1|hk, ak).

We now make the so-called perfect recall assumption that
for each player i, any information node x ∈ Xi contains all
information about previous information nodes for player i
as well as its past actions:

Assumption 1 (Perfect recall). For each player i ∈ {1, 2},
all x ∈ Xi, all h, h′ ∈ x, any policy π, we assume that
µπi (h) = µπi (h′).

Under this assumption we can define µπi (x)
def
= µπi (h), for

x = x(h). As a consequence, the reach probability µπ(x) =

∑
h∈x µ

π(h) of any observation x ∈ Xi can be factorized
as the product of µπi (x) (Player i’s contribution to reach x)
and µπ6=i(x) (the opponent’s and chance’s contributions to
reach x):

µπ(x) =
∑
h∈x

µ0(h)µπi (h)µπ−i(h) = µπi (x)µπ6=i(x),

where µπ6=i(x)
def
=

∑
h∈x µ

π
6=i(h) and µπ6=i(h)

def
=

µ0(h)µπ−i(h).

We deduce that for any two policy profiles π and π′, x ∈ Xi,

µ(πi,π
′
−i)(x) = µπi (x)µπ

′

6=i(x). (8)

The MDP Mπ−i
i : In general, the observation process

(xt = x(hk))k≥0 is a POMDP. However, under the perfect
recall assumption, if we fix the policy πi of the opponent,
then the observation process (xk)k≥0:i(hk)=i (at successive
times k when it is Player i’s turn to play) forms an MDP,
which we write asMπ−i

i . In particular, the probability to
transit from x ∈ Xi to another x′ ∈ Xi does not depend
on the player’s own policy. See Proposition 1 and Section I
in the Appendix for the precise definition and properties of
this MDP.

3.4. MAIO for Imperfect Information Games

MAIO requires being able to compute an improved policy
π̄t over πt at each iteration. The improvement I(π̄t, πt) is
defined exactly as in Definition 1 where the value functions
V πi are considered from the initial state (5).

Algorithm [MAIO for IIG]: For each player i ∈ {1, 2},
we start with a uniform policy πi,0(x) from all x ∈ Xi. At
every iteration t ≥ 0, we compute an improved policy π̄t(x)
over πt (several possible choices are described later). For
each player i, we evaluate the Q-values Q(πi,t,π̄−i,t)

i (h, a)
and reach probabilities µπ̄t6=i(h) and we define a new policy
πt+1, for each x ∈ Xi, as

πi,t+1(x) ∈ arg max
πi∈∆(Ai)

[
−Dϕ(πi, πi,t(x)) (9)

+ηt
∑
a∈Ai

πi(a)
∑
h∈x

µπ̄t6=i(h)Q
(πi,t,π̄−i,t)
i (h, a)

]
.

Notice that if µ(πi,t,π̄−i,t)
i (x) 6= 0 then (see (15) for a proof),∑

h∈x

µπ̄t6=i(h)Q
(πi,t,π̄−i,t)
i (h, a) = µπ̄t6=i(x)Q

(πi,t,π̄−i,t)
i (x, a).

We notice that this MAIO algorithm for IIGs makes use of
the counterfactual reach probabilities µπ̄t6=i(h) introduced in
counterfactual regret minimization algorithms (Zinkevich
et al., 2008).

Now we analyze the theoretical properties of this algorithm.
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3.5. Theoretical analysis of MAIO-IIG

Letting π∗ ∈ Π∗ be any Nash eq. of the game, we introduce
the energy function of the IIG:

Jπ∗(π)
def
=

∑
i∈{1,2}

∑
x∈Xi

µπ
∗

i (x)Dϕ(π∗i (x), πi(x)),

and we write Jπ∗(t) = Jπ∗(πt). Our main result is the
following:

Theorem 3. The MAIO algorithm for IIG produces a se-
quence of policies such that for any Nash eq. π∗ ∈ Π∗,

Jπ∗(t+ 1) ≤ Jπ∗(t)− ηtI(π̄t, πt) + cη2
t ,

where c
def
= 4

σ |A|
2/qQ2

maxLmax, Qmax =
maxπ maxh∈H,a∈A |Qπ(h, a)|, and Lmax =

maxπ
∑
x µ

π(x). Thus, with ηt = I(π̄t,πt)
2c we have

Jπ∗(t+ 1) ≤ Jπ∗(t)−
I(π̄t, πt)

2

4c
.

Remark 3. The coefficient Lmax is a bound on the effec-
tive time horizon (in the case of finite horizon, Lmax is a
lower bound on the time horizon, in the discounted setting
Lmax = 1/(1 − γ) and in the case of stochastic shortest
path problems it is the largest expected time before reaching
the terminal state).

This result is similar to Theorem 1 in the sense that it states
that the current policy gets closer to the Nash eq. as long as
π̄t improves over πt. The distance to the Nash eq. is mea-
sured in terms of Jπ∗(π) which is a distance in policy space.
More precisely, Jπ∗(π) measures the Bregman divergence
between the policy πt(x) and π∗(x) weighted by the player
i’s own probability µπ

∗

i (x) to reach x ∈ Xi when following
a Nash eq. policy.

Now in the IIG setting, there are several ways to compute
an improved policy π̄t which will be discussed later. First
we consider as improved policy, the best response, which
provides the largest improvement.

3.6. MAIO-BR for IIG

Now, let us consider as improved policy the best response,
i.e., bi,t ∈ arg maxπ I(π, πt). First we show that the ex-
ploitability I∗(π) of any policy π is upper bounded by its
`2-energy distance J to Π∗. Thus minimizing the J-distance
to the set of Nash eq. implies minimizing exploitability as
well.

Lemma 2. For any policy π, we have

I∗(π)2 ≤ L2
max|A|Q2

max min
π∗∈Π∗

Jπ∗(π).

Now we state a convergence result to the set of Nash eq.

Theorem 4 (Convergence of MAIO-BR). The sequence
of policies produced by MAIO-BR algorithm with ηt =
I∗(πt)/(2c) converges to the set of Nash equilibria, in the
sense that limt→∞minπ∗∈Π∗ Jπ∗(πt) = 0. Notice that
from Lemma 2 we also deduce the result in exploitability:
limt→∞ I∗(πt) = 0.

In the normal form games we could deduce an exponential
convergence speed to the set of Nash eq. thanks to Lemma 1.
Unfortunately, in the case of IIGs, we do not have a similar
result. Indeed we have the following counter-example:
Lemma 3. There exists a two-player zero-sum imperfect
information game such that there exists no κ > 0 such that
for all π, I∗(π) ≥ κminπ∗∈Π∗

√
Jπ∗(π), where Jπ∗ is the

energy distance (i.e. ϕ is the `2 norm).

The reason why the situation in IIGs is different from that
in normal form games is that the mapping πi 7→ V

(πi,π−i)
i

is not globally linear in πi.

However, under the perfect recall assumption, the value
function is linear w.r.t. the individual reach probability of
each player (the so-called sequence form, see e.g. (Von Sten-
gel, 1996)). Thus by defining the `2 distance in reach proba-
bilities:

d(π, π′)
def
=

∑
i∈{1,2}

∑
x∈Xi,a∈A

[
µπi (x, a)− µπ

′

i (x, a)
]2
,

where we write µπi (x, a)
def
= µπi (x)πi(a|x), we can deduce

the following result:
Lemma 4. There exists a constant κ > 0 (which depends
on the game), such that for any policy π we have

I∗(π) ≥ κ min
π∗∈Π∗

√
d(π∗, π)

We can also show that the distance Jπ∗(π) = O(d(π∗, π)):
Lemma 5. For any π∗ there exists two constant δ, c > 0
such for any π such that d(π∗, π) ≤ δ, we have

Jπ∗(π) ≤ c d(π∗, π).

Notice that Lemmas 5 and 4 do not contradict Lemma 3
because the constants δ and c in Lemmas 5 depend on the
specific choice of the policy π∗ ∈ Π∗.

Now, under some assumption of the set of Nash eq., we
can combine Lemmas 5 and 4 together with Theorem 3 to
deduce an exponential rate of convergence.
Theorem 5. Consider MAIO-BR with a `2-regularizer, and
a learning rate ηt = I∗(πt)

2c . Define

ε = inf
π∗∈Π∗,i∈{1,2},x∈Xi,a∈A:µπ

∗
i (x,a)>0

µπ
∗

i (x, a).

If ε > 0 then MAIO-BR converges to the set of Nash equi-
libria at an exponential rate.
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Notice that a sufficient condition for ε > 0 (thus in order
that MAIO-BR enjoys an exponential rate) is that the Nash
eq. is unique.

3.7. Improved policies

MAIO for IIG requires computing an improved policy π̄
over the current one π. In the case of IIGs there are several
possible choices for computing such improved policies with
different trade-off between computational complexity versus
amount of improvement, thus speed of convergence to the
Nash eq. Here are a few examples. First we introduce
the notion of local improvement and derive a sufficient
condition for a policy π̄ to improve over π.

Define the local improvement: for any x ∈ Xi,

Ii(π̄, π)(x)
def
=
∑
a∈Ai

(π̄i(a|x)− πi(a|x))Q
(πi,π−i)
i (x, a).

Lemma 6. Given two policy profiles π and π̄. If, for any
Player i, any x ∈ Xi, the local improvement Ii(π̄, π)(x) ≥
0, then π̄ improves over π, i.e., I(π̄, π) ≥ 0. In addition, if
Ii(π̄, π)(x) > 0 for some x ∈ Xi such that µ(π̄i,π−i)(x) >
0, then I(π̄, π) > 0.

Proof. Applying Lemma 9 (in the Appendix) to the policies
πi, π̄i, and π−i, the improvement is

I(π̄, π) =
∑
i

∑
x∈Xi

µ(π̄i,π−i)(x)Ii(π̄, π)(x),

from which we deduce our claim.

This result tells us that in order to find an improved policy
π̄ it is sufficient that from each state x ∈ Xi, the expected
Qπi (x, ·)-values under policy π̄i(·|a) are larger than under
the current policy πi(·|a). Here are a few examples of
improved policies.

Best response: for each i, bi = arg maxπ′i V
(π′i,π−i).

This is the policy which improves the most. In this case
I(b, π) represents the exploitability of the current policy,
and we have seen in Theorem 5 that an exponential rate of
convergence can be achieved. However computing the best
response at each iteration is computationally expensive as
it requires solving an optimal control problem, so we may
prefer cheaper alternatives.

Greedy policy: The greedy policy is easy to deduce once
the Q-values of the current policy have been computed:

gi(x)
def
∈ arg maxaQ

π
i (x, a). From Lemma 6 this policy

provides an improvement over π, thus I(g, π) ≥ 0. How-
ever it is possible that I(g, π) = 0 while π is not a Nash
eq. yet, see Appendix P for an illustration of this situation

and several solutions to circumvent this problem. Comput-
ing a greedy policy has a smaller computational complexity
than computing the best response since it requires evaluating
a fixed policy instead of finding the optimal one.

Optimistic mirror descent and extra-gradient method:
(see e.g., (Mertikopoulos et al., 2019)) one could follow a
step of mirror descent against the current opponent which,
in the IIG setting here, would correspond to defining the
improved policy as

π̄i,t(x) ∈ arg max
πi∈∆(Ai)

[
ρtµ

π
6=i(x) πi·Qπi (x)−Dϕ(πi, πi,t(x))

]
,

for some step ρt > 0. It is possible to prove that this
policy π̄t improves locally over the current policy πt:
I(π̄t, πt)(x) = Dϕ(π̄t(x), πt(x)) thus improves globally
as well, from Lemma 6.

Mixture policy: Any mixture between an improved pol-
icy π̄ and the current policy π improves over the current
policy. For example one could use the mixture π̄α def

=
(1− α)π + απ̄ between the current and improved policies,
defined for every x ∈ Xi as

π̄αi (a|x) ∝ (1−α)µπi (x)πi(a|x) +αµπ̄i (x)π̄i(a|x), (10)

(see e.g. Heinrich et al. (2015) Lemma 6, or Zinkevich et al.
(2008) Eq. (4)). The value function of this mixture is the
convex combinations of the value functions: V (π̄αi ,π−i)

i =

(1− α)V
(πi,π−i)
i + αV

(π̄i,π−i)
i . Thus the improvement of

this mixture is I(π̄α, π) = αI(π̄, π). A possible benefit of
using this mixture for small α is that this policy is close
to the current policy, so we can think of using off-policy
techniques in sampling-based policy evaluation algorithms,
while guaranteeing convergence to the Nash eq.

MCTS improved policy: An improved policy could be
obtained by Monte Carlo Tree Search (or any other plan-
ning algorithm). This would return an improved policy
whose improvement depends on the depth of the search,
from the greedy policy (corresponding to 1-step look-ahead
search) to the full best response (full tree search). Thus the
MAIO setting allows one to use MTCS for computing Nash
eq. in IIGs. The trade-off is computational complexity (as
a function of the depth of the search) versus the amount of
improvement (thus how fast the algorithm converges to the
Nash eq.) of the policy returned by the search.

4. Numerical experiments on matrix games
Here we evaluate MAIO-BR on 2 matrix games with both
`2 and entropy regularization. In the Appendix, Section P
we report experiments of MAIO for IIG and compare to
other approaches (CFR, CFR-BR, CFR+).
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Figure 1. We report `2 distance to the Nash eq. (in log-scale) for
MAIO-BR on the ε-matrix game (Fig. a,b,c) and the biased rock-
paper-scissors game (Fig. d). MAIO-BR with `2 regularization
shows an exponential convergence whose rate depend on ε (Fig. a)
and the constant c (Fig. b) used in the learning rate. On the contrary,
MAIO-BR with softmax does not enjoy an exponential rate (Fig. c)
since the Nash eq. is deterministic. However in a games where
the Nash eq. is interior, both `2 and soft-max show exponential
convergence (Fig. d). Non-zero value in the plots is explained
by numerical precision (we use the numpy package with double
precision).

The first game is defined by the matrix payoff: R =
(

0 1−ε
2 1

)
parameterized by some ε > 0. See the discussion in sub-
section 2.6 (and Appendix E). The `2 distance to the Nash
eq. is reported in Figure 1. We observe the exponential
convergence with a rate that depends on ε (Fig. 1(a)) and
the constant c (Fig. 1(b)) used in the learning rate (i.e., we
chose ηt = c · I(π̄t, πt)). This is exactly what is predicted
by the theory since the value of κ in Lemma 1 is ε/

√
2 here.

Fig. 1(c) corroborates our conjecture mentioned in subsec-
tion 2.6 (see Appendix O) that MAIO-BR with entropy
regularization does not enjoy exponential convergence (for
any c) when the Nash eq. is not an interior point (here it is a
corner of the simplex: π∗1 = (0, 1) and π∗2 = (0, 1)). On the
contrary, Fig. 1(d) shows that MAIO-BR enjoys exponential
convergence both with `2 and entropy regularizers (although
`2 seems faster) on the (biased) rock-paper-scissors game,

defined by R =
( 0 −1 0.1

1 0 −0.1
−0.1 0.1 0

)
, for which the Nash eq. is

interior.

5. Conclusion
We introduced a new class of algorithms for computing
a Nash equilibrium in zero-sum normal form games and
sequential IIGs and provided an analysis of the speed of
convergence in terms of the notion of improvement. We
show a new tradeoff between computational complexity of
computing improved policies and speed of convergence to
the set of Nash eq. Under some condition (including when
the Nash eq. is unique) exponential convergence is achieved
when we use the best response as improved policy. Maybe
the main contribution of MAIO is that it offers a principled
approach to use any reinforcement learning policy improve-
ment technique (one-step greedy policy, MCTS-improved
policy, or even a policy improved by policy gradient) to
generate a sequence of policies with convergence guarantee
to the set of Nash equilibria.
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